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Rue Rene Descartes, 67084, Strasbourg, France
3 Department of Mathematics, Faculty of Science, Hiroshima University,
Higashi-Hiroshima, Hiroshima, 739-8526, Japan

E-mail: seno@math.is.tohoku.ac.jp

Received 11 March 2020, revised 2 August 2020
Accepted for publication 10 August 2020
Published 10 September 2020

Abstract
We analyze the Lotka–Volterra n prey-1 predator system without any interspe-
cific interaction between preys, in which each prey species has the relationship
of apparent competition with any other prey species. The system we considered
in this paper necessarily has a globally asymptotically stable unique equilibrium
state. We find the necessary and sufficient condition to determine which equi-
librium states becomes asymptotically stable. Then we consider the effect of the
deletion of a native prey species and that of the invasion of an alien prey species
on the stability of the system. We prove that the deletion of a prey species could
not cause the secondary extinction of any other prey species but could make the
predator go extinct. In contrast, if an alien prey species is successfully intro-
duced into the system at the coexistent equilibrium state, the extinction of some
native prey species could occur by the apparent competition effect. Moreover,
such a successful introduction of an alien prey species causes the reduction
of the population size of every surviving native prey species while it always
increases the predator’s equilibrium population size even when some native
prey species go extinct. We show that the strength of the apparent competition
effect would be significantly affected by the number and the composition of
coexisting prey species.
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1. Introduction

The interspecific interaction in a food web is made up of direct and the indirect effects [2].
Direct effect includes competition, predation and symbiosis. Indirect effect is defined as an
effect on a species from another which has no direct interaction with it. The indirect effect
between two species could occur through interactions with the other species in the food web.
Apparent competition is defined by Holt [16, 17] as a negative indirect effect between two prey
species which have a shared predator and have no direct interaction between them. Jeffries and
Lawton [23, 24] called the corresponding indirect effect the competition for enemy-free space.
In a system of one predator and its two prey species, one prey population plays a roll to increase
the predator population, so that the other prey population can be regarded as indirectly affected
by the former prey population even if no direct interaction exists between them. There have
been lots of previous ecological works related to apparent competition, in which the effect of
predation on the diversity of competing prey species was mainly discussed [6, 7, 12, 14, 32,
35, 36]. However, as Holt and Bonsall [20] clearly describes in a recent up-to-date review,
the ‘apparent competition’ effect defined above has been accepted and it is used today for the
theoretical discussions in a variety of contexts which transcend ecology. This can be seen in the
agricultural, medical and sociological sciences with a variety of examples in reality including
pest control [3, 5, 21, 22], immune dynamics [26], and epidemics [8] (also see the literatures
cited in [18, 20]).

In nature, the members of a food web are always subjected to change on a long time scale
following species extinctions and invasions [4, 29]. Morris et al [30] successfully demonstrated
the long-term apparent competition in natural communities of herbivorous insects, and gave
a suggestion that interactions mediated by shared natural enemies may be a significant factor
in structuring natural communities. In lots of theoretical researches about the effect of the
species deletion or introduction on the community structure, community assembly models or
‘global models’ has been constructed, analyzed and investigated mainly to discuss the stability
of structure [1, 7, 10, 11, 34].

In this paper, we analyze the Lotka–Volterra n prey-1 predator system in which prey
species have no direct interaction among them. Prey species have only indirect interactions,
that is, apparent competition via the shared predator. We revisit the system analyzed in Holt
[16], and we find the necessary and sufficient condition to determine which equilibrium
states becomes globally asymptotically stable, because the system necessarily has a globally
asymptotically stable unique equilibrium state. Then, we shall focus on the transition of the
equilibrium state due to the deletion or the introduction of a prey species into the system.
With this, we discuss in a systematic manner how many prey species a generalist preda-
tor could coexist with and how the apparent competition works to balance the equilibrium
state.

2. Model

We consider the following well-known Lotka–Volterra n prey-1 predator system:
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⎧⎪⎪⎨
⎪⎪⎩

dHi

dt
= (ri − βiHi)Hi − biHiP (i = 1, 2, . . . , n);

dP
dt

= −δP +

n∑
i=1

cibiHiP,
(1)

where Hi is the population size of prey i, P the population size (e.g., density) of predator, ri the
intrinsic growth rate of prey i, βi the coefficient of the intraspecific density effect for prey i, bi

the predation rate for prey i, δ the predator’s natural death rate, and ci the energy conversion
rate of the predation for prey i. Prey species have no interspecific interaction. No intraspecific
density effect is assumed for the predator.

We consider the system (1) with the initial condition such that

P(0) > 0; 0 < Hi(0) � ri/βi (i = 1, 2, . . . , n), (2)

since ri/βi is the carrying capacity for prey i. In our model, without loss of generality, we
assume the following order of the numbering for prey species, as similarly done in Holt [16]:

r1

b1
� r2

b2
� · · · � rn

bn
. (3)

3. The globally asymptotically stable equilibrium state

First of all, we have the following theorem, based on the theorem for the general Lotka–Volterra
system, proved by Takeuchi and Adachi [37] (also see [38]):

Theorem 1. The system (1) always has a globally asymptotically stable equilibrium state.

The globally asymptotically stable equilibrium state means here that the system (1) asymp-
totically converges to the equilibrium state as t →∞ for any initial condition given by (2) (for
more mathematical treatment of the global stability, see [15, 38] for example). This theorem
means also that the system (1) cannot converge to any temporally oscillating (e.g., periodic or
chaotic) stationary state.

Since the system (1) could have at most 2n+1 different equilibrium states, we will find in the
next part the condition to determine which equilibrium state becomes globally asymptotically
stable. This will help us to discuss later the consequence of the apparent competition between
preys through a shared predator.

At first, let us consider the equilibrium state with the predator’s extinction for the system
(1). We can prove the following theorem (appendix A; figure 1):

Theorem 2. The equilibrium state with the predator’s extinction for the system (1),

(H1, H2, . . . , Hn, P) =

(
r1

β1
,

r2

β2
, . . . ,

rn

βn
, 0

)
, (4)

is globally asymptotically stable if and only if

δ � Rn :=
n∑

i=1

ri

bi

cib2
i

βi
. (5)

Since Rn can be regarded as monotonically increasing in terms of n from its definition, this
theorem implies that the predator can survive only when a sufficiently large number of prey
species are available. On the contrary, if we reduce the number of prey species available for a
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Figure 1. A numerical result about the δ-dependence of the equilibrium state for (1)
after a shared predator’s invasion into the system with coexisting six prey species. (a)
Number of surviving prey species; (b) Equilibrium size of the predator population. ci =
0.1; r1 = 0.1; r2 = 0.115; r3 = 0.13; r4 = 0.145; r5 = 0.16; r6 = 0.175; bi = 0.001;
βi = 0.0001(1 � i � 6).

shared predator, the predator could go extinct. Moreover, it is implied that such an extinction
of predator is most likely to be caused by the deletion of the prey species which has the largest
value of cibiri/βi since the deletion of such a prey species reduces the value of Rn by the largest
amount. So such a prey species could be regarded as a sort of ‘keystone species’ which is the
most relevant for the shared predator’s survival.

From theorem 2, we have the following corollary:

Corollary 1. If and only if δ < Rn, the predator of (1) can survive.

When the predator survives, some prey species could go extinct because of the apparent com-
petition effect. In the following arguments, we will focus on the feature of the system (1) with
respect to which prey species can coexist with the surviving shared predator.

Let us consider now the following type of an equilibrium state E∗
k for (1):

(H1, H2, . . . , Hn, P) =

⎛
⎝H∗

[k],1, H∗
[k],2, . . . , H∗

[k],k, 0, . . . , 0︸ ︷︷ ︸
n−k

, P∗
[k]

⎞
⎠ (6)
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with H∗
[k],i > 0 (i = 1, 2, . . . , k) and P∗

[k] > 0. From (1), this equilibrium state E∗
k can be

uniquely given by

H∗
[k],i =

ri − biP∗
[k]

βi
; P∗

[k] =
Rk − δ

Bk
, (7)

where

Rk :=
k∑

i=1

ri

bi

cib2
i

βi
; Bk :=

k∑
i=1

cib2
i

βi
. (8)

From (7), we can find the following condition for the existence of the equilibrium E∗
k :

Rk −
ri

bi
Bk < δ < Rk for any i ∈ [1, k]. (9)

From (3), since ri+1/bi+1 � ri/bi (i = 1, 2, . . . , n − 1), the condition (9) is equivalent to the
following:

Rk −
rk

bk
Bk < δ < Rk. (10)

For the convenience of the mathematical arguments in the following part, we show here the
following lemma:

Lemma 1. The sequence {Rk − (rk/bk)Bk} (k = 1, 2, . . . , n) is non-negative and
non-decreasing.

Indeed, from (3) and (8), we have

R�+1 −
r�+1

b�+1
B�+1 −

(
R� −

r�
b�

B�

)
=

(
r�
b�

− r�+1

b�+1

) �∑
i=1

cib2
i

βi
� 0,

and R1 − (r1/b1)B1 = 0 necessarily from the definition (8), which shows the non-decrease and
the non-negativity of the sequence at the same time.

Now we define a specific index of prey species s by

s := max

{
� ∈ [1, n]

∣∣∣∣ r�
b�

> P∗
[�]

}
= max

{
� ∈ [1, n]

∣∣∣∣δ > R� −
r�
b�

B�

}
. (11)

From the definitions (7) and (8), since

P∗
[1] =

R1 − δ

B1
=

r1

b1
− δβ1

c1b2
1

<
r1

b1
,

it is necessarily satisfied that s � 1. Then we note that

rj

bj
� P∗

[ j] :=
Rj − δ

Bj
, that is, δ � Rj −

rj

bj
Bj for any j > s, (12)

because of lemma 1.
We can prove the following two theorems with respect to the existence and the stability of

the equilibrium state E∗
s (appendix B):

Theorem 3. The equilibrium state E∗
s with s < n exists and it is globally asymptotically

stable if and only if

Rs −
rs

bs
Bs < δ � Rs+1 −

rs+1

bs+1
Bs+1. (13)
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Theorem 4. The equilibrium state E∗
n exists and it is globally asymptotically stable if and

only if

Rn −
rn

bn
Bn < δ < Rn. (14)

The state E∗
n is the equilibrium with all prey species and the shared predator coexisting.

The global stability can be proved by making use of the Lyapunov function. Especially for
the equilibrium state E∗

1 with the surviving predator and only prey 1, we can get the following
corollary from theorem 3:

Corollary 2. The equilibrium state E∗
1 exists and it is globally asymptotically stable if and

only if

0 < δ � R2 −
r2

b2
B2 = R1 = c1b1

r1

β1
. (15)

This is actually because R1 − (r1/b1)B1 = 0 in (13) necessarily from the definition (8).
Finally, the conditions for the existence and the global stability of equilibrium states given

by (5), (13)–(15) are complementary so that the union of those conditions for all equilibria
covers all parameter region from lemma 1. As a consequence, we have arrived at the result
consistent with theorem 1, clarifying the condition about which equilibrium state becomes
globally asymptotically stable.

Since these theorems have shown that the reachable equilibrium state is (4) with the
predator’s extinction or E∗

k defined by (6), we can have the following result:

Corollary 3. For the system (1), any equilibrium with the surviving predator other than the
type of E∗

k defined by (6) is always unstable even if it exists.

For example, it is possible to consider an equilibrium state such that Hi = 0 (i < k), Hj > 0
( j � k), and P > 0 for a number k > 1. Our result shows that such an equilibrium state is
unstable even if it exists. This result is based on our numbering of the prey species by (3).

4. Deletion of a prey species

For the system (1), we consider the state transition after the deletion of a prey species from a
globally asymptotically stable equilibrium state with the shared predator and its preys (more
than one) coexisting. In this paper, the ‘extinction’ means a consequence of the internal popu-
lation dynamics between prey and predator, whereas the ‘deletion’ may be caused by the other
kinetics, for example, by a human activity or by a stochastic ecological disturbance. In a more
mathematical sense, the ‘deletion’ of a prey species results in the reduction of the dimension
of our system from n + 1 to n, while the ‘extinction’ must be necessarily considered for the
system (1) of n + 1-dimension.

We can obtain the following theorem (appendix C; figure 2):

Theorem 5. If a prey species is deleted from the coexistent equilibrium state, the system
alternatively transfers to the state at which the predator coexists with the rest of prey species
or the state at which the predator goes extinct.

This theorem indicates that the deletion of a native prey species from the coexistent equilibrium
state does not cause any secondary extinction of any other native prey species due to the effect
of apparent competition.
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Figure 2. Temporal variation of population sizes after the deletion of a prey species at
t = 600 from the coexistent equilibrium state with a shared predator and six prey species.
(a) Prey H1 is deleted. No secondary extinction occurs; (b) Prey H6 is deleted. The
shared predator goes extinct after the deletion. P(0) = 20.0; H1(0) = 100.0; H2(0) =
115.0; H3(0) = 130.0; H4(0) = 145.0; H5(0) = 160.0; H6(0) = 175.0; δ = 0.48; ci =
0.7; r1 = 0.1; r2 = 0.115; r3 = 0.130; r4 = 0.145; r5 = 0.16; r6 = 0.175; bi = 0.001;
βi = 0.001 (1 � i � 6).

Further, we can obtain the following result about the predator population size at the equi-
librium state transferred from the coexistent equilibrium state by the deletion of a prey species
(appendix D):

Theorem 6. By the deletion of a prey species from the coexistent equilibrium state, the
system transfers to an equilibrium state at which the predator population necessarily has a
size smaller than before. Simultaneously each of the surviving prey populations at the new
equilibrium state has a size greater than before.

The last part of the above theorem can be easily seen from (7). A numerical example is given
in figure 2.

5. Introduction of a prey species

In this section, we consider the state transition from the coexistent equilibrium state with a
shared predator and its native preys by the introduction of an alien prey species. From theorems
obtained in the previous sections, the system transfers to one of the following four states after
the introduction of an alien prey species (see figure 3):

• The introduced alien prey goes extinct, and the system returns to the original state.
• The system transfers to the coexistent equilibrium state with the introduced alien prey

species and all native species.
• Some native prey species go extinct, and the predator coexists with some surviving native

and the introduced alien prey species.
• Every native prey species goes extinct, and the predator coexists with the introduced alien

prey species.

We can prove the following theorem (appendix E):

Theorem 7. If an alien prey species satisfying the conditions below is introduced into the
coexistent equilibrium state E∗

n of (1), the system transfers to the equilibrium state with the

7
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Figure 3. Temporal variation of population sizes after the introduction of prey H3 at t =
600 into the coexistent equilibrium state with the shared predator and two prey species.
(a) b3 = 0.000 85. No extinction occurs. (b) b3 = 0.000 77. Prey H2 goes extinct. (c)
b3 = 0.0007. Prey H1 and H2 go extinct. Commonly, P(0) = 20.0; H1(0) = 300.0;
H2(0) = 300.0; H3(600) = 1.0; δ = 0.3; c1 = c2 = 0.3; c3 = 1.2; r1 = 0.2; r2 = 0.19;
r3 = 0.18; b1 = b2 = 0.001; β1 = β2 = β3 = 0.0001.

predator, the introduced alien prey species, and the native n − k prey species from the 1st to
the kth (< n), while the native prey species from the k + 1th to the nth go extinct.(

r•
b•

− rk

bk

)
c•b2

•
β•

< δ −
(

Rk −
rk

bk
Bk

)
;

(
r•
b•

− rk+1

bk+1

)
c•b2

•
β•

� δ −
(

Rk −
rk+1

bk+1
Bk

)
,

(16)

where parameters c•, b•, β•, and r• are of the introduced alien prey species.

From theorem 7, we can find the following corollary:

Corollary 4. If an alien prey species satisfying the conditions below is introduced into the
coexistent equilibrium state E∗

n of (1), the system transfers to the coexistent equilibrium state
E∗

n+1 without the extinction of any species:

r•
b•

>
Rn − δ

Bn
;

(
r•
b•

− rn

bn

)
c•b2

•
β•

< δ −
(

Rn −
rn

bn
Bn

)
. (17)

From the first condition of (17), the transition to the coexistent equilibrium state E∗
n+1 with

n + 1 prey species requires a sufficiently large value of r•/b•. We remark that the first condi-
tion is always satisfied if r•/b• � rn/bn, while the second is always satisfied if r•/b• < rn/bn.
Furthermore, if r•/b• = rn/bn, the condition (17) is satisfied independently of the parameters.
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Figure 4. Parameter dependence of the equilibrium state after the introduction of a
prey H6 into the system at the coexistent equilibrium state with a predator and five
prey species. Numerical calculations on the number of surviving prey species, the
equilibrium population size of the introduced prey H6, and that of the shared preda-
tor. (a) b6-dependence with (c6,β6) = (1.2, 0.0001); (b) c6-dependence with (b6,β6) =
(0.0005, 0.0001); (c) β6-dependence with (c6, b6) = (0.7, 0.0008). Commonly, δ =
0.38; ci = 0.7(1 � i � 5); r1 = 0.2; r2 = 0.195; r3 = 0.19; r4 = 0.185; r5 = 0.180;
r6 = 0.175; bi = 0.001 (1 � i � 5); βi = 0.0001 (1 � i � 5).

Thus, any alien prey species satisfying r•/b• = rn/bn can successfully invade in the considered
coexistent equilibrium state.

Next we can find the following corollary for the case that the introduced alien prey species
goes extinct:

Corollary 5. If an alien prey species satisfying the condition below is introduced into the
coexistent equilibrium state E∗

n of (1), the introduced alien prey species goes extinct, and the
system returns to the original state:

r•
b•

<
Rn − δ

Bn
.

This result indicates that the extinction of the introduced alien prey species, that is, the failure
of its invasion depends only on the parameters r• and b•, and not on the other parameters
including the energy conversion rate c• for its predation, and its intraspecific density effect β•.
Thus, the success of the introduction of an alien prey species is determined only by the ratio
r•/b•, whereas the consequence arising after its successful introduction depends also on the
other parameters of the introduced alien prey species.

As shown in figure 4(a), if the introduced prey species is difficult enough to be preyed
on (with sufficiently small b6), its introduction does not cause any extinction of the native
species and the system transfers to the new coexistent equilibrium state with the introduced prey
species. Such a new coexistent equilibrium state could be realized also when the introduced
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prey species is moderately easy to be preyed on, whereas the introduced prey species goes
extinct if it is really easy to be preyed on. It is very interesting that, when the introduced prey
species is moderately hard to be preyed on (for a certain intermediate range of the value of
b6), the introduction of such an alien prey species causes the elimination of every native prey
species and results in the equilibrium state with only the introduced alien prey species and the
predator.

As shown in figure 4(b), if the predator’s energy conversion rate for the introduced prey
species is sufficiently small, its introduction does not cause any extinction of the native species
and the system transfers to a new coexistent equilibrium state with the introduced prey species.
In contrast, if the predator’s energy conversion rate for the introduced prey species is large, the
introduction of such an alien prey species causes the extinction of some native prey species
due to the apparent competition effect. If the energy conversion rate is sufficiently large, the
introduction of such an alien prey species eliminates every native prey species and results in
the equilibrium state with only the introduced alien prey species and the predator.

As shown in figure 4(c), if the introduced prey species has a sufficiently strong intra-specific
density effect, its introduction does not cause any extinction of the native species and results in
the coexistent equilibrium state with the introduced prey species. If the introduced prey species
has a weak intra-specific density effect, its introduction causes the extinction of some native
prey species due to the apparent competition effect. Moreover, if the introduced prey species
has a sufficiently weak intra-specific density effect, its introduction eliminates every native
prey species and results in the equilibrium state with only the introduced prey species and the
predator.

As for a specific case with ri/bi = ρ for any i, the introduction of any prey species with
r•/b• = ρ in the coexistent equilibrium state of (1) always results in the transition to the coex-
istent equilibrium state with no extinction of any species, as shown by corollary 4. Hence,
in such a case, any alien prey species with r•/b• = ρ can be successfully introduced into the
native system without causing the extinction of any native species, so that the number of coex-
isting prey species is unbounded as long as the introduced prey species has the same value
r•/b• as the native prey species, independently of the difference not only in the values of r•
and b• themselves but also in any other parameter.

As for the predator population size at the equilibrium state transferred after the introduction
of a prey species, with arguments similar to the proof of theorem 6 in appendix D, we can
prove the following lemma:

Lemma 2. If the system transfers to a new equilibrium state without any extinction after
the introduction of an alien prey species in the coexistent equilibrium state, the predator
population at the new coexistent equilibrium state has a size greater than before.

Moreover, we can prove the following lemma, too (appendix F; see figures 3 and 4):

Lemma 3. If the system transfers to a new equilibrium state without the extinction of the
introduced prey species and the predator, the predator population size is larger as the number
of surviving prey species gets smaller at the new coexistent equilibrium state.

Consequently, we have the following theorem:

Theorem 8. The successful invasion of an alien prey species always results in the increase
of the predator population size, independently of the number of surviving native prey species
at the new equilibrium state. Moreover, as the number of extinct native prey species is larger,
the predator population size at the new equilibrium state becomes greater than before the
introduction of an alien prey species.

10



J. Phys. A: Math. Theor. 53 (2020) 415601 H Seno et al

As the predator population size increases, each of surviving native prey populations at the new
equilibrium state has a size smaller than before. This can be easily seen from (7).

6. Concluding remarks

In this paper, we analyzed the Lotka–Volterra n prey-1 predator system (1), focusing on the
transition of the equilibrium state due to the deletion or the introduction of a prey species. As
shown in theorem 3, we determined the necessary and sufficient condition for the predator’s
extinction (theorem 2), because a globally asymptotically stable equilibrium state always and
uniquely exists for (1) from theorem 1.

Which preys could coexist with an shared predator? At the globally asymptotically
stable equilibrium state, the extinct prey species has the smaller value of r/b in our model
(theorem 3). The predator goes extinct if every available prey species has very small value of
r/b (theorem 2). As a special case, if every prey species has a common value of r/b, the number
of prey species with which the shared predator can coexist is unbounded for the Lotka–Volterra
n prey-1 predator system (1), independently of the difference not only in the values of r and b
themselves but also in any other parameter.

These results imply that for the stable existence of a food web with a generalist predator
and a certain number of its preys, the value of r/b for its prey species would come to have
a large average and necessarily small variance after a sequence of changes in the member of
prey species following their extinction and invasion. This was mentioned also in [16, 20] as the
high species diversity under the condition that the value of r/b is similar for all prey species.
Furthermore this may be related to the ‘biotic homogenization’, the process making the species
composition more similar after the alien species invasion, as Dangremond et al [9] discussed
about the plant community with relation to the apparent competition.

Consequence of the deletion of a prey species. Deletion of a prey species from the equi-
librium state with a shared predator does not cause the extinction of any other prey species,
whereas the predator may go extinct (theorem 5). In case of no secondary extinction induced
by the deletion of a prey species, each prey population size becomes larger than before while
the predator population size becomes smaller (theorem 6). Hence this case can be regarded as
a decrease in the number of prey species available for the predator to result in the reduction of
the apparent competition effect on each prey species.

The deletion of a prey species which has the greater value of cb(r/β) is more likely to
cause the predator’s extinction (theorems 2 and 5). Such a prey species is easily preyed on and
provides a high predator reproduction, or has a relatively large carrying capacity. In the context
of a pest control, in order to suppress/eliminate the pest population regarded as a generalist
predator, it would be a good option to identify such a prey species for the pest and reduce its
population size.

Consequence of the introduction of alien prey species. Introduction of an alien prey
species could strengthen the apparent competition effect on each prey species. In such a case,
some native species would go extinct, while the system would transfer to the equilibrium
state with the predator, the introduced prey species and some surviving native prey species
(theorem 7). Hence, a series of the invasion of alien prey species could cause the decrease
of the number of prey species available for the predator due to the extinction of native prey
species by the apparent competition, and subsequently the system would come to have the
predator species and only one prey species (see figure 3(c)). In such a case, the predator is
identified as a specialist predator. From theorem 2 and corollary 1, as for the stable existence
of such a specialist predator, the value of r/b characterizing the prey species would be large
enough.
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In contrast, the introduction of an alien prey species may result in no extinction of any
species, and then the system transfers to the coexistent equilibrium state with the predator,
all native prey species and the introduced alien prey species (theorem 7). In such a case, the
equilibrium predator population size becomes larger than before, while the equilibrium prey
population sizes get smaller (lemma 2). We could regard this case as an increase in the number
of available prey species to cause the stronger apparent competition effect. Indeed Messelink
et al [27] investigated the biological control by a generalist predator in a laboratory system
of three pest species (western flower thrips, greenhouse whitefly, and spider mite) and their
predator (predatory mite), in which such a dependence of the predator population size on the
composition of prey species was clearly observed.

Predator population size at the equilibrium state. The predator population size becomes
larger as the number of surviving prey species gets smaller due to their deletion and introduc-
tion. Then each of coexisting prey population sizes gets smaller (theorem 8). As the number
of extinct prey species due to the successful introduction of alien prey species gets larger, the
surviving prey species undergo stronger apparent competition effect. In such a case, the appar-
ent competition effect from the introduced prey species would overcompensate that from those
native prey species which have gone extinct. In short, the successful introduction of alien prey
species which could cause a strong apparent competition effect is likely to result in the extinc-
tion of some native prey species. From the viewpoint of the predator, such extinction of some
native prey species due to the introduction of alien prey species consequently appears as an
exchange of some available prey species with the other species preferable for the predator’s
reproduction.

As a consequence, the introduction of alien prey species into the equilibrium state with a
shared predator and its prey species never reduces the predator population size at the equilib-
rium state, and causes the stronger effect of apparent competition whenever the introduction
of the alien prey species results in its successful settlement. In contrast, the deletion of a prey
species from the equilibrium state with a shared predator and its prey species never causes
any secondary extinction of the other prey species, and could cause only extinction of the
predator. These results may be regarded as corresponding to those given by Petchey [33], who
investigated some microcosms of bacteria and bacterivores in laboratory and showed that the
prey diversity can affect the predator population dynamics. As implied by our theoretical argu-
ments above, the apparent competition could be a significant factor to determine the structure
of foodweb, tangled with the other interspecific reactions within it, as discussed in [12, 14, 32,
35, 36].

Implication for pest control. In the context of pest control, we suggest from our results that
the introduction of alien prey species would be effective only if the purpose of the pest control
is to reduce the population of a native prey species (which is the pest), while the deletion of a
native prey species would be effective only if the purpose is to reduce the predator population
(which is the pest).

For biological control in agroecosystems, the introduction of an alien species would be a
better choice compared to the deletion of a native species. In grape vineyards, Karban et al
[25] found that the release of economically unimportant Willamette mites alone, or of preda-
tory mites alone fails to significantly reduce populations of the damaging Pacific spider mite.
However, when both herbivorous Willamette and predatory mites were released together, the
population of the Pacific mites was reduced. This may be regarded as a case when the intro-
duction of an alien prey species (the herbivorous Willamette mite) would be effective to reduce
a native prey population (the Pacific mite) if there is a shared predator (the predatory mite). As
Holt and Hochberg [19] discussed, the indirect interactions may contribute to the biological
control in such a way. At the same time, it should be kept in mind that the introduction of an
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alien species as a biological control agent would cause the decrease of some native species
populations other than that of the target pest species [5].

In the context of spatial heterogeneity. As Holt [17] highlighted, our n prey-1 predator
system with no direct interspecific reaction between prey species can be translated in the con-
text of spatial heterogeneity as a system with a spatially heterogeneous environment composed
of n patches for the habitat of a prey species. Assuming that the prey mobility between patchy
habitats is negligible or impossible, and that the predator mobility has the spatial scale large
enough to cover the area of all patches, the prey subpopulations of those patches undergo the
effect of apparent competition through the predator population. The prey’s population dynam-
ics is affected by the environment at each patch, so that its nature would be different from patch
to patch.

In such a setup, the result for the Lotka–Volterra n prey-1 predator system (1) implies that
the apparent competition could cause the extinction of prey population at some patches, that
is, a sort of local extinction of a prey species. The deletion of a prey species in this paper could
be translated into the destruction of a patch, while the invasion of an alien prey could be mean
the appearance of an additional patchy habitat of the prey species by a human operation or by
a certain change of predator’s spatial distribution.

Although our results are from a simple mathematical model, we believe that they could
demonstrate that apparent competition effect could drive some species to extinction. This find-
ing could be useful for pest control. In contrast to lots of previous theoretical works related
to apparent competition which discussed the effect of predation on the diversity of competing
prey species, we considered only how apparent competition affects the coexistence of a shared
predator and its prey species. We expect that our mathematical work will be helpful for some
future theoretical works on this problem and some other related ones.

In this paper, we considered the simplest Lotka–Volterra prey-predator system with the
mass-action term which introduces the predation effect between prey and predator. The mod-
ification with the introduction of such an intraspecific competition effect within the predator
population, for instance −εP2, may not change the essence of our results. This could be shown
by mathematical analyses similar to ours. However, for some other types of prey-predator sys-
tem with different terms for predation, stable periodic solution or bistability state can appear
as evident in models with switching predation (for example, see [28, 39]). As implied by Noy-
Meir [31], even the simple mathematical model of prey-predator population dynamics may
show a specific behavior, depending on the assumptions for the dynamical nature of the inter-
action between prey and predator. Further this kind of theoretical/mathematical work is closely
related to the theory of community assembly which we did not consider deeply here (read-
ers interested in the theory can see relevant literature cited in this section and the references
therein).
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Appendix A. Proof of theorem 2

At first, to prove theorem 2, we prove the following lemmas:

Lemma 4. If P(0) > 0, then P(t) > 0 at any time t > 0.
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Lemma 5. If 0 < Hi(0) � ri/βi and P(0) > 0, then 0 < Hi(t) < ri/βi at any time t > 0.

Proof. Since there exists the solution such that P(t) ≡ 0 for any t for (1) with P(0) = 0. On
the other hand, from (1), we can get the following formal equation:

Hi(t) = Hi(0) exp

[
rit −

∫ t

0
{βiHi(τ ) − biP(τ )} dτ

]
(i = 1, 2, . . . , n); (A.1)

P(t) = P(0) exp

[
−δt +

n∑
i=1

cibi

∫ t

0
Hi(τ )dτ

]
. (A.2)

The formal solution (A.2) for P(t) shows that P(t) > 0 for any t > 0, because of the uniqueness
of the solution for (1). This proves lemma 4.

There exists the solution such that Hi(t) ≡ 0 for any t and any i for (1) with Hi(0) = 0.
Hence, from the uniqueness of the solution for (1), the formal solution (A.1) for Hi(t) shows
that Hi(t) > 0 for any t > 0 with Hi(0) > 0. Then, for Hi(t) > 0 and P(t) > 0, we have

dHi

dt

∣∣∣∣
Hi�ri/βi

= (ri − βiHi − biP)Hi �
(

ri − βi
ri

βi
− biP

)
Hi = −biPHi < 0 (A.3)

for any t > 0. Therefore, if 0 < Hi(0) � ri/βi (i = 1, 2, . . . , n), it is impossible that Hi(t) �
ri/βi for any t > 0. Consequently we have lemma 5. �

By these lemmas, we can find that

dP
dt

=

(
−δ +

n∑
i=1

cibiHi

)
P �

(
−δ +

n∑
i=1

ri

bi

cib2
i

βi

)
P = (−δ + Rn) P.

Then, if δ > Rn, from the comparison theorem, we can find that

P(t) � P(0)e(−δ+Rn)t (A.4)

for any t > 0. From lemma 4, we find from (A.4) that P(t) → 0 as t →∞ if −δ + Rn < 0.
Next, suppose that P(t) → 0 as t →∞. From (1), we can easily see that Hi(t) → ri/βi (i =

1, 2, . . . , n) as P(t) → 0. On the other hand, it is clear that the following equilibrium with P = 0
is always unstable for any k > 0:

(r1/β1, r2/β2, . . . , rk/βk, 0, . . . , 0︸ ︷︷ ︸
n−k

, 0),

because any prey population grows in a logistic manner without any predator. Thus, if P(t) → 0,
the system (1) asymptotically goes to the equilibrium state (r1/β1, r2/β2, . . . , rn/βn, 0). By
the local stability analysis for the equilibrium state (r1/β1, r2/β2, . . . , rn/βn, 0), we can easily
prove that if P(t) → 0 as t →∞, it is necessary that −δ + Rn < 0.

If δ = Rn, we have

dP
dt

=

(
−Rn +

n∑
i=1

cibiHi

)
P =

n∑
i=1

cibi

(
− ri

βi
+ Hi

)
P < 0

for any time t > 0 by lemma 5. Therefore, P(t) → 0 as t → 0 again. These arguments prove
theorem 2.

14



J. Phys. A: Math. Theor. 53 (2020) 415601 H Seno et al

Appendix B. Proof of theorems 3 and 4

Proof. First, we consider the existence of the equilibrium state E∗
s . When s < n, from

(11) and (12), we have (13). On the other hand, from the definition (8), we can easily find
that

Rk+1 −
rk+1

bk+1
Bk+1 = Rk −

rk+1

bk+1
Bk (B.1)

for k = 1, 2, . . . , n. Therefore, from (12), we now have

δ � Rs+1 −
rs+1

bs+1
Bs+1 = Rs −

rs+1

bs+1
Bs < Rs for s < n. (B.2)

Hence, when the condition (13) is satisfied, the condition (10) for the existence of the equilib-
rium E∗

s with s < n holds. So, the equilibrium state E∗
s with s < n exists if the condition (13)

is satisfied. When s = n, the condition (14) is the condition (10) with s = n for the existence
of the equilibrium E∗

n. This means that the equilibrium state E∗
n exists if the condition (14) is

satisfied with s = n.
Next, let us turn to consider the stability of equilibrium state E∗

s . For the case of s < n, we
define the function

Vs(t) :=P∗
[s]

{
P(t)
P∗

[s]

− 1 − log
P(t)
P∗

[s]

}
+

s∑
i=1

ciH
∗
[s],i

{
Hi(t)
H∗

[s],i

− 1 − log
Hi(t)
H∗

[s],i

}

+

n∑
i=s+1

ciHi(t). (B.3)

Then, from (1), the derivative of Vs(t) becomes

dVs(t)
dt

= −
s∑

i=1

ciβi{Hi(t) − H∗
[s],i}2 +

n∑
i=s+1

ciHi(t)
{

ri − βiHi(t) − biP
∗
[s]

}
, (B.4)

where we especially used the following equations about the equilibrium state E∗
s :

−δ +
s∑

i=1

ciβiH
∗
[s],i = 0; H∗

[s],i =
ri − biP∗

[s]

βi
(i = 1, 2, . . . , s).

From the definition of s by (11),

ri − βiHi(t) − biP
∗
[s] < ri − βiHi(t) − bi

rs

bs
= −βiHi(t) − bi

(
rs

bs
− ri

bi

)
< 0 (B.5)

for any i > s and any t > 0, because of (3) and lemma 5 in appendix A. Thus, from (B.4) and
(B.5), we have found that dVs(t)/dt < 0 for any t > 0.

It can be easily found from (B.3) and (B.4) that Vs and dVs/dt are zero only at the equi-
librium E∗

s , and further that Vs is positive definite for any (H1, H2, . . . , Hn, P) other than E∗
s

in Ω := {(H1, H2, . . . , Hn, P) |Hi > 0 and P > 0}. This means that the function Vs is the Lya-
punov function for the equilibrium state E∗

s , and we can conclude that E∗
s is globally asymp-

totically stable in Ω. Taking account of corollary 2, this result with the above arguments about
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the existence of E∗
s shows that the equilibrium state E∗

s with s < n exists globally asymp-
totically stable for (1) if the condition (13) is satisfied. Consequently these arguments prove
theorem 3.

For the case of s = n, let us consider the function

Vn(t) :=P∗
[n]

{
P(t)
P∗

[n]

− 1 − log
P(t)
P∗

[n]

}
+

n∑
i=1

ciH
∗
[n],i

{
Hi(t)
H∗

[n],i

− 1 − log
Hi(t)
H∗

[n],i

}
. (B.6)

From (1), we can get the following derivative of Vn(t):

dVn(t)
dt

= −
n∑

i=1

ciβi

{
Hi(t) − H∗

[n],i

}2 � 0,

where dVn/dt = 0 only when Hi(t) = H∗
[n],i for every i, while Hi(t) cannot remain the value

H∗
[n],i besides being at the equilibrium state E∗

n . Since Hi(t) temporally varies as long as
P(t) �= P∗

[n] even when Hi(t) = H∗
[n],i for every i, we can see that Vn(t) is monotonically

decreasing in terms of t > 0, even though dVn/dt = 0 at some moments when Hi(t) = H∗
[n],i

for every i. Moreover, as long as P(t) > 0 and Hi(t) > 0, we have Vn � 0, where Vn =
0 only at the equilibrium state E∗

n. With the arguments same as above, Vn is the Lya-
punov function for the equilibrium state E∗

n. Therefore the equilibrium state E∗
n is glob-

ally asymptotically stable if the condition (13) is satisfied with s = n. Consequently these
arguments prove theorem 4. For the further mathematical information about the analysis on
the global stability with Lyapunov function, refer, for example, [13, 38] and the references
therein. �

Appendix C. Proof of theorem 5

Proof. By the similar argument about the condition (9) for E∗
k , the condition for the existence

of the coexistent equilibrium state of the system with n − 1 preys after the deletion of prey k
from the coexistent equilibrium state E∗

n is given by

Rn\k −
ri

bi
Bn\k < δ < Rn\k (i = 1, 2, . . . , n; i �= k), (C.1)

where

Rn\k :=Rn −
rk

bk

ckb2
k

βk
; Bn\k :=Bn −

ckb2
k

βk
. (C.2)

From theorem 2, the necessary and sufficient condition for the predator’s extinction after the
deletion of prey k is that δ > Rn\k.

In case of δ < Rn\k, substituting (14) with (C.2), we can rewrite the condition (14) for the
coexistent equilibrium state E∗

n as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bk

rk
<

Bn\k

Rn\k − δ

bk

rk
>

{
βk

ckbkrk

(
Rn\k − δ − ri

bi
Bn\k

)
+ 1

}
bi

ri
(i = 1, 2, . . . , n; i �= k).
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From this condition, we have the following inequality:

0 <
Bn\k

Rn\k − δ
−
{

βk

ckbkrk

(
Rn\k − δ − ri

bi
Bn\k

)
+ 1

}
bi

ri

= −bi

ri

(
Rn\k − δ − ri

bi
Bn\k

)(
1

Rn\k − δ
+

βk

ckbkrk

)
(i = 1, 2, . . . , n; i �= k).

Therefore, the following condition is necessarily satisfied:

Rn\k −
ri

bi
Bn\k < δ (i = 1, 2, . . . , n; i �= k).

This is equivalent to (C.1). Hence, from theorem 3, the coexistent equilibrium state of the preda-
tor and the remaining n − 1 prey species is globally asymptotically stable. These arguments
prove theorem 5. �

Appendix D. Proof of theorem 6

Proof. If the predator goes extinct after the deletion of a prey species at the coexistent equi-
librium state E∗

n of (1), then the theorem holds. So, from theorem 5, we hereafter focus on the
case when the system transfers to the equilibrium state with the predator and the remained prey
species after the deletion of a prey species.

From (7), the predator population size P∗
[n] at the coexistent equilibrium state E∗

n and the size
P∗

[n\k] at the equilibrium state approached after the deletion of prey k are respectively given by

P∗
[n] =

Rn − δ

Bn
; P∗

[n\k] =
Rn\k − δ

Bn\k
,

where Rn\k and Bn\k are defined by (C.2). Now from the definition of Rn and Bn by (8), we can
easily get the following equation:

P∗
[n] − P∗

[n\k] =
Bn − Bn\k

BnBn\k

{
δ −

(
Rn −

rk

bk
Bn

)}
. (D.1)

Now from (14), we have δ > Rn − (rn/bn)Bn. Hence, from the condition that rk/bk � rn/bn

by (3), we have δ > Rn − (rk/bk)Bn, and thus find that the right side of (D.1) is positive. As a
result, P∗

[n] > P∗
[n\k] for any k (1 � k � n). �

Appendix E. Proof of theorem 7

Proof. Let us consider the introduction of a prey species with its parameters c•, b•, β•, and
r•. We now define the following Rn⊕1 and Bn⊕1:

Rn⊕1 :=Rn +
r•
b•

c•b2
•

β•
; Bn⊕1 :=Bn +

c•b2
•

β•
. (E.1)

It is satisfied that Rn⊕1 > δ, since Rn⊕1 > Rn and Rn > δ on the condition of the globally asymp-
totically stable equilibrium state E∗

n. From theorem 4, n + 1 prey species can coexist with the
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shared predator after the introduction of the prey species if the following condition is satisfied:

δ > Rn⊕1 − min

(
rn

bn
,

r•
b•

)
Bn⊕1. (E.2)

On the other hand, since

Rn −
rn

bn
Bn = Rn⊕1 −

r•
b•

c•b2
•

β•
− rn

bn
Bn

< Rn⊕1 −
r•
b•

c•b2
•

β•
− min

(
rn

bn
,

r•
b•

)
Bn

= Rn⊕1 −
r•
b•

c•b2
•

β•
− min

(
rn

bn
,

r•
b•

)(
Bn⊕1 −

c•b2
•

β•

)

= Rn⊕1 − min

(
rn

bn
,

r•
b•

)
Bn⊕1 −

{
r•
b•

− min

(
rn

bn
,

r•
b•

)}
c•b2

•
β•

< Rn⊕1 − min

(
rn

bn
,

r•
b•

)
Bn⊕1,

it is possible that the condition (E.2) is not satisfied after the introduction of an alien prey
species on the condition of the globally asymptotically stable equilibrium state E∗

n . If (E.2)
is not satisfied, then from theorem 3, some native prey species go extinct while the system
transfers to an equilibrium state with the predator, some surviving native prey species, and the
introduced alien prey species. From theorem 3, if only k (< n) native prey species survive at
the new equilibrium state with the predator and the introduced alien prey species, the stability
condition (13) indicates that the following condition is satisfied:

Rk⊕1 − min

(
rk

bk
,

r•
b•

)
Bk⊕1 < δ � R(k+1)⊕1 −

rk+1

bk+1
B(k+1)⊕1. (E.3)

In this case, we necessarily have r•/b• > rk+1/bk+1. Since δ > Rn − (rn/bn)Bn on the con-
dition of the globally asymptotically stable equilibrium state E∗

n , we can find the following
inequality:

Rk −
r•
b•

Bk < Rk −
rk+1

bk+1
Bk = Rk+1 −

rk+1

bk+1
Bk+1 � Rn −

rn

bn
Bn < δ. (E.4)

If rk/bk � r•/b•, the first inequality of (E.3) becomes

δ > Rk⊕1 −
r•
b•

Bk⊕1 = Rk −
r•
b•

Bk,

which is satisfied because of (E.4). If r•/b• > rk/bk, the first inequality of (E.3) becomes

δ > Rk⊕1 −
rk

bk
Bk⊕1,

which can be rewritten as the first inequality of (16) in theorem 7, making use of (E.1).
Consequently we note that the first inequality of (16) in theorem 7 holds whenever rk/bk �

r•/b•. Thus, the first inequality of (16) in theorem 7 is necessary and sufficient in order that
the first inequality of (E.3) is satisfied. In the same way, the second inequality of (E.3) can be
rewritten as the second inequality of (16) in theorem 7, making use of (E.1).
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Lastly, if an alien prey species which satisfies (16) in theorem 7 is introduced into the coex-
istent equilibrium state E∗

n any prey species which has ri/bi less than rk/bk goes extinct, and
the system transfers to the equilibrium state with the predator, k native prey species, and the
introduced alien prey species. �

Appendix F. Proof of lemma 3

Proof. Let us consider an introduced prey species characterized by parameters c•, b•, β•,
and r•. From theorem 3, if the system transfers to the equilibrium state with the predator and
k prey species (k < n) including the alien prey species, the condition that r•/b• > rk/bk must
be satisfied, and then the predator population size P∗

[(k−1)⊕1] at the new equilibrium state must
satisfy the following condition:

rk

bk
< P∗

[(k−1)⊕1] < min

(
rk−1

bk−1
,

r•
b•

)
, (F.1)

by the definition (11) of s.
In another case that an alien prey species characterized by parameters c′•, b′

•, β
′
•, and r′• is

introduced into the coexistent equilibrium state E∗
n, if the system transfers to the equilibrium

state with the predator and k′ (> k) prey species including the alien prey species, the following
condition must be satisfied:

r′•
b′
•
>

rk′

bk′
;

rk′

bk′
< P∗

[(k′−1)⊕1] < min

(
rk′−1

bk′−1
,

r′•
b′
•

)
. (F.2)

Since rk′−1/bk′−1 � rk/bk for k′ > k, we find from (F.1) and (F.2) that

P∗
[(k′−1)⊕1] <

rk′−1

bk′−1
� rk

bk
< P∗

[(k−1)⊕1].

Therefore, P∗
[(k′−1)⊕1] < P∗

[(k−1)⊕1] if k′ > k. As for the other two cases that no extinction occurs
and that only one native prey species goes extinct, we can show that P∗

[n⊕1] < P∗
[(n−1)⊕1] with

the same arguments. �
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